
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Simple Custom Route Planning Application for

Organizing Room or City with Javafx and A*

Algorithm

Abdullah Mubarak - 13522101

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13522101@std.stei.itb.ac.id

Abstract—This paper presents a Simple Custom Route

Planning Application designed for organizing rooms or cities

using JavaFX and the A* algorithm. The application features an

intuitive graphical user interface built with Scene Builder and

managed through Maven, allowing users to draw paths, place

obstacles, and compute optimal routes efficiently. Nodes within a

grid pane can be interactively marked, connected, or erased, with

paths dynamically adjusting in response to these changes. Users

can also place various types of obstacles, such as furniture or

buildings, which the A* algorithm navigates around to find the

shortest path. (Abstract)

Keywords—A* Algorithm; Route Planning; JavaFX; Path

Finding; Organizing Room; Organizing City.

I. INTRODUCTION

Efficient navigation and spatial organization are

crucial aspects in various domains, ranging from personal

living spaces to urban planning. With the increasing

complexity of environments and the necessity for optimized

paths, developing effective pathfinding solutions has become

an essential task. Although still lacking in many aspects, this

paper presents a simple custom pathfinding application

tailored for organizing rooms or city layouts, leveraging

JavaFX for the graphical user interface and the A* algorithm

for pathfinding.

The A* algorithm, known for its efficiency and

accuracy in finding the shortest path in a weighted graph,

serves as the core of my application. It combines the benefits

of Dijkstra's algorithm and greedy best-first search, making it

a popular choice for real-time pathfinding. With its heuristic

function, A* can receive multiple variables to define the most

suitable path. By integrating A* with JavaFX, a powerful and

versatile Java library for building rich internet applications, we

create a user-friendly platform that allows users to visualize

and manage spatial arrangements effectively.

My application aims to provide an intuitive interface

for users to define spaces, obstacles, and destinations, enabling

automatic generation of optimal paths. This functionality can

be applied to various scenarios, such as arranging furniture in

a room, planning evacuation routes, or designing urban

infrastructure.

II. THEORY AND CONCEPTS

A. JavaFX

JavaFX is next generation client application platform build

on Java. JavaFX is a powerful Java library for building cross-

platform graphical user interfaces (GUIs) and rich internet

applications (RIAs). It offers a suite of graphics and media

tools that allow developers to create, test, debug, and deploy

complex client applications that work seamlessly across

various platforms.

JavaFX supports the best practice of building good

graphical user interfaces (GUI), that is using model-view-

controller to separate view or user interface (UI) design with

controller. View contains visual/graphical attribute component

of the interface whereas the controllers handle interaction and

the action of each component of the interface.

JavaFX controllers are written in Java language whereas

views are written in FXML - an XML-based markup language

used to describe user interface. An integral part of the FXML

format is a possibility of declaring an associated controller

class and exposing to it UI elements, and event handler hooks.

The controller is then responsible for reacting on the events

and updating the view accordingly.

FXML can be edited in text editor called Scene Builder.

Scene Builder enables to quickly design JavaFX application

by dragging a UI component from its library and dropping it

into a content view area. Scene Builder also provide quick

setting for layout and properties such as padding, layout,

margins.

B. Route Planning

Route planning is the process of computing the effective

method of transportation or transfers through several stops. It

uses a weighted graph to represent the stops (nodes), the path

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

(side), and the cost of the path (weight). There are several

types of algorithms for route planning, including: Breadth-

First Search (BFS), Depth-First Search (DFS), Uniform Cost

Search (UCS), Greedy Best-First Search (GBFS), A-Star (A*).

Breadth-First Search (BFS) is an algorithm that explores

all neighbors’ nodes at the present depth prior to moving on to

nodes at the next depth level. It ensures that the shallowest

node is expanded first, guaranteeing the shortest path in terms

of the number of edges traversed. This method is typically

used when finding the shortest path in an unweighted graph.

Depth-First Search (DFS) explores as far as possible along

each branch before backtracking. It's often implemented

recursively and is useful for traversing or searching tree or

graph structures. While it doesn't necessarily find the shortest

path, it's memory efficient and can be used for tasks like

topological sorting, cycle detection, and maze generation.

Uniform Cost Search (UCS) is an algorithm that expands

the least cost node, preferring cheaper paths. It's optimal for

finding the shortest path in weighted graphs where edge costs

can vary. UCS is similar to BFS but takes into account the cost

of the path rather than just the number of edges.

Greedy Best-First Search (GBFS) selects the node which is

closest to the goal based on a heuristic function. It's not

guaranteed to find the shortest path but can be very efficient,

especially in large search spaces. GBFS is suitable for

problems where an approximate solution is acceptable or

when the entire search space is too large to explore

exhaustively.

A-Star (A*) is a variance of Dijkstra algorithm that

combines the advantages of UCS and GBFS by considering

both the cost of the path from the start node and the estimated

cost to reach the goal node (heuristic function). It uses a

heuristic function to guide the search towards the most

promising nodes, resulting in an optimal path if certain

conditions are met.

C. A* Algorithm

A* algorithm is one of the best paths finding (or in this

case route planning) algorithm that can calculate the best path

with certain conditions (can be maximum cost or minimum

cost). Like other path finding algorithms, A* has evaluation

functions to determine the best path. The evaluation function:

f(n) = g(n) + h(n)

Fig. 1. The image of connection between f(n), g(n), h(n)

(Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Route-Planning-Bagian2-2021.pdf)

g(n) is the total cost that accumulates from the start node to

the n node, whereas h(n) is the heuristic value that represents

the estimated cost from current node to the goal node. It can

be very different in each case.

One of the most frequently used heuristic function is the

Manhattan distance. Manhattan distance is used to calculate

the value of the absolute axis distances of two nodes in

geometric metric space. The value of Manhattan distance in

the 2-dimensional plane is the value between two points,

calculating from the vertical axis and the distance on the

horizontal axis and add these two distances.

The green line is the Euclidean distance, which is used to

calculate the straight-line distance between two points. The

red line calculates the Manhattan distance by adding two

values from the vertical axis and the horizontal axis [1].

𝑑(𝑎, 𝑏) = |𝑎𝑥 − 𝑏𝑥 | + |𝑎𝑦 − 𝑏𝑦|

Fig. 2. The image of calculating the Manhattan Distance

(Source: [1])

Different heuristic function can result in very different

result. For a heuristic function to be considered admissible for

the problem, it must have better or same cost than value of the

g(n) (lower if minimum or higher if maximum).

Step-by-step implementation of A* algorithm:

1. Initialize:

Create two lists: open_list (initially containing the start

node) and closed_list (initially empty).

Define the start node with g(start)=0 and calculate

f(start)=g(start)+h(start).

2. Loop Until Goal is Reached:

Select the node with the lowest f-value from the

open_list and set it as the current node. Move the current node

from open_list to closed_list.

3. Generate Successors:

For each neighbor of the current node: If the neighbor is in

the closed_list, ignore it else calculate g and f for the neighbor.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

If the neighbor is not in the open_list, add it and record its f-

value.

If the neighbor is in the open_list but with a higher g-

value, update its g-value and re-calculate f.

4. Repeat:

Continue the process of selecting nodes, calculating costs,

and updating lists until the goal node is reached or the

open_list is empty.

5. Path Reconstruction:

Once the goal is reached, reconstruct the path by tracing

back from the goal node to the start node using recorded

parent nodes.

III. APPLICATION IMPLEMENTATION

A. A* Mapping

1. Solution Space

Solution space of this application can be represented in a

vector with n-tuple sized:

𝑋 = (𝑥1, 𝑥2, ．．, 𝑥n)

with 𝑥1, 𝑥2, ．．, 𝑥n ∈ {UP, DOWN, RIGHT, LEFT}

or

with 𝑥1, 𝑥2, ．．, 𝑥n ∈ {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}

This structured representation of the solution space helps

to found the best paths from the start node to the goal node,

considering all potential movements at each step.

2. Bounding Function

The bounding function in this application plays a crucial

role in ensuring the validity of the solution space by limiting

the xxx values so that they remain within the bounds of the

grid. This function checks whether the coordinates resulting

from any movement direction (UP, DOWN, RIGHT, LEFT)

stay within the grid's predefined limits. This prevents the

algorithm from considering invalid moves that would lead to

positions outside the grid, which could result in errors or

infinite loops.

In addition to ensuring the movements stay within the grid,

the bounding function also checks the walkability of the new

position. This means that the function not only ensures the

new position is within bounds but also that it is a traversable

node (i.e., not an obstacle). By combining these checks, the

bounding function helps in maintaining the feasibility of the

generated path, ensuring that all considered paths are within

the valid and walkable regions of the grid. This mechanism is

essential for the proper functioning of the A* algorithm, as it

systematically prunes infeasible paths and focuses

computational resources on exploring valid and promising

routes.

3. Node

The code defines a Node class representing each point on

the grid, with attributes for coordinates, cost from the start

node (g), heuristic cost to the goal (h), and the parent node for

path reconstruction. The Node class includes methods for

calculating the total cost (getF()), comparison for priority

queue ordering, and equality checks.

Here is the code implementation for class Node:

class Node implements Comparable<Node> {

 public int row, col;

 public int g, h;

 public Node parent;

 public Node(int row, int col) {

 this.row = row;

 this.col = col;

 }

 public int getF() {

 return g + h;

 }

 @Override

 public int compareTo(Node other) {

 return Integer.compare(this.getF(),

other.getF());

 }

 @Override

 public boolean equals(Object obj) {

 if (this == obj) return true;

 if (obj == null || getClass() !=

obj.getClass()) return false;

 Node node = (Node) obj;

 return row == node.row && col == node.col;

 }

 @Override

 public int hashCode() {

 return Objects.hash(row, col);

 }

}

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

4. Generating Function

The generating function in the A* algorithm is responsible

for producing successor nodes from the current node based on

the possible movement directions. For each node being

evaluated, the function considers all potential movements (UP,

DOWN, RIGHT, LEFT) by adding the corresponding

direction vectors to the current node’s coordinates. It then

checks each new coordinate using the bounding function to

ensure it is within the grid's limits and walkable. If the new

coordinate is valid, a new successor node is created with

updated g-values (cost from the start node to this successor

node), and heuristic h-values (estimated cost from this

successor node to the goal). These successor nodes are then

added to the open set for further evaluation.

5. Total Cost

The total cost function in the A* algorithm is the key to

determining the most efficient path from the start node to the

goal node. It is computed using the evaluation function:

f(n)=g(n)+h(n)

where g(n) is the cumulative cost from the start node to the

current node n, and h(n)is the heuristic estimate of the cost

from n to the goal.

he g(n) value represents the actual cost incurred to reach

node n, considering the sum of all the movements taken so far.

The heuristic h(n) often implemented as the Manhattan

distance in grid-based pathfinding, estimates the remaining

cost to reach the goal, guiding the algorithm by prioritizing

nodes that seem closer to the goal. The total cost f(n) thus

combines the known cost with the heuristic estimate, allowing

A* to balance between exploring the shortest known path and

the most promising routes based on the heuristic. This

approach ensures that A* finds an optimal path efficiently,

minimizing the total traversal cost from start to goal.

B. A* Implementation

In this application the AStar class encapsulates the

algorithm, maintaining the grid's dimensions and walkability.

It defines directions for possible movements (up, down, left,

right). The findPath method implements the A* algorithm,

using a priority queue (openSet) to explore nodes with the

lowest total cost first. It also uses a set (closedSet) to keep

track of visited nodes.

The algorithm begins by initializing the start node's costs

and adding it to the open set. It then enters a loop where it

processes the current node (the one with the lowest f value),

checks if it's the goal, and explores its neighbors. For each

neighbor, the algorithm calculates a tentative g cost and

updates the neighbor's costs and parent if the new path is

better. The heuristic used is the Manhattan distance, suitable

for grid-based pathfinding.

If the goal node is reached, the path is reconstructed by

tracing back from the goal to the start node using parent

pointers. If no path is found, the method returns an empty list.

This straightforward implementation demonstrates the

essential steps of the A* algorithm, ensuring efficient and

optimal pathfinding in a grid environment.

Here is the code implementation for class A*:

private static final int[][] DIRECTIONS = {{1, 0},

{0, 1}, {-1, 0}, {0, -1}};

private final int rows, cols;

private final List<List<Boolean>> walkable;

public AStar(int rows, int cols, List<List<Boolean>>

walkable) {

 this.rows = rows;

 this.cols = cols;

 this.walkable = walkable;

}

public List<Node> findPath(Node start, Node goal) {

 PriorityQueue<Node> openSet = new

PriorityQueue<>();

 Set<Node> closedSet = new HashSet<>();

 start.g = 0;

 start.h = heuristic(start, goal);

 openSet.add(start);

 while (!openSet.isEmpty()) {

 Node current = openSet.poll();

 if (current.equals(goal)) {

 return reconstructPath(current);

 }

 closedSet.add(current);

 for (int[] direction : DIRECTIONS) {

 int newRow = current.row + direction[0];

 int newCol = current.col + direction[1];

 if (isValid(newRow, newCol) &&

walkable.get(newRow).get(newCol)) {

 Node neighbor = new Node(newRow,

newCol);

 if (closedSet.contains(neighbor))

continue;

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 int tentativeG = current.g + 1;

 if (tentativeG < neighbor.g ||

!openSet.contains(neighbor)) {

 neighbor.g = tentativeG;

 neighbor.h = heuristic(neighbor,

goal);

 neighbor.parent = current;

 if (!openSet.contains(neighbor))

{

 openSet.add(neighbor);

 }

 }

 }

 }

 }

 return Collections.emptyList(); // No path found

}

private int heuristic(Node a, Node b) {

 return Math.abs(a.row - b.row) + Math.abs(a.col -

b.col);

}

private boolean isValid(int row, int col) {

 return row >= 0 && col >= 0 && row < rows && col

< cols;

}

private List<Node> reconstructPath(Node node) {

 List<Node> path = new ArrayList<>();

 while (node != null) {

 path.add(node);

 node = node.parent;

 }

 Collections.reverse(path);

 return path;

}

C. Application Implementation

In this JavaFX application, Scene Builder plays a pivotal
role in streamlining the graphical user interface (GUI)
development process. Author use Scene Builder's intuitive
drag-and-drop interface to ease designs and constructs the
application's GUI elements. The grid pane attribute serves as
the primary canvas for visualizing the main area, with each
node represented by a distinctive blue color.

Fig. 3. The image of grid pane

(Source: author documentation)

There are a few features implemented:

1. Draw path

One of the notable features of the application is the ability
for users to draw paths by marking nodes within the grid. This
interactive feature enables users to define routes or sequences
of waypoints by simply clicking on the grid cells. The
flexibility of this functionality allows for the creation of
multiple sets of nodes, with each set delineated by a separate
draw actio. Additionally, users have the convenience of erasing
nodes by clicking on them again, facilitating iterative
refinement of route plans.

Fig. 4. The image of grid that have been clicked

(Source: author documentation)

2. Place Obstacle

Another significant feature of the application is the

capability to place obstacles within the environment,

simulating real-life elements such as furniture in a room or

buildings in a city layout. These obstacles are categorized into

two types: manual and shape-based. The shape-based

obstacles, just circles (for now), offer user the flexibility to

customize dimensions such as radius and can be added to grid

simply by click on the wanted posotion.

Furthermore, users can opt for manual placement of

obstacles, providing precise control over obstacle placement

by selecting specific grid cells. The visual representation of

obstacles, distinguished by darker shades of grey within the

grid, facilitates clear identification and manipulation.

Additionally, user can remove obstacles by clicking on them.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

D. Further Reference

Further reference about the application are presented

in the author’s repository on github:

https://github.com/b33rk/MakalahStima

IV. INTEGRATION TESTING

1. Draw Path Without Obstacle

Fig. 6. Path without Obstacle

(Source: author documentation)

Fig. 7. Path fig. 6 after removing one node

(Source: author documentation)

As can be seen in two images above, the application can

do one of the intended feature (draw path). The auto connect

feature when node is removed also successfully implemented.

2. Place Obstacle

Fig. 8. The image of obstacles

(Source: author documentation)

The application also successfully implements feature that

enables users to place obstacles effectively within the grid.

Obstacles can represent various real-life elements such as

furniture in a room or buildings in a city layout. Users can

choose between manual placement and shape-based obstacles.

Shape-based obstacles, such as circles and squares, can be

customized in size and position, enhancing the application's

versatility. Manual obstacles allow for precise placement by

clicking on specific grid cells, with darker grey shades

indicating the presence of obstacles. This feature provides a

clear visual distinction between traversable and non-

traversable areas, aiding users in realistic scenario planning

and route adjustments.

3. Draw Path with Obstacles

Fig. 9. The image of obstacles + path finding

(Source: author documentation)

As illustrated in the image above, the A* algorithm can

compute the shortest paths that navigate around placed

obstacles. This feature is critical for real-world applications

where paths must be planned around fixed structures or

impassable areas. The application dynamically adjusts the

computed route to find the optimal path that avoids obstacles,

ensuring that the path remains efficient.

V. CONCLUSION AND SUGGESTION

A. Conclusion

In this paper, author presented a simple custom route

planning application for organizing rooms or cities, leveraging

JavaFX and the A* algorithm. The application provides a

user-friendly interface for drawing paths, placing obstacles,

and finding optimal routes. Utilizing Scene Builder and

Maven, the application's design and functionality were

streamlined, allowing users to interactively plan and adjust

routes in real-time. The integration of features such as

automatic node connection, dynamic obstacle placement, and

efficient pathfinding demonstrates the application's

functionality. Through comprehensive testing, the application

has shown to handle various scenarios effectively, showing

possibility to be used for both room organization and city

planning purposes.

B. Suggestion

Author realises that this application still lacking in many

aspects to be used in real work and implementation. But,

author believe, with proper enhancement, this application can

be more useful and play a bigger role. Future enhancements

that author suggest focussing on expanding include:

1. Enhanced Obstacles: Introduce more complex

obstacle shapes and types, including irregular

polygons and dynamic obstacles that can change

position over time.

2. Multiple Floors/Levels: Extend the application to

support multi-floor buildings or multi-level city

https://github.com/b33rk/MakalahStima

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

structures, allowing users to plan routes that navigate

across different levels.

3. Integration with Real-World Data: Incorporate

real-world data such as traffic information, pedestrian

flow, or room occupancy to provide more accurate

and realistic route planning.

4. User Customization: Enable users to save and load

custom layouts, allowing them to reuse and share

their configurations easily.

5. Improved Heuristics: Experiment with different

heuristic functions to enhance the efficiency and

accuracy of the A* algorithm, especially for larger

and more complex grids.

6. Mobile Compatibility: Develop a mobile version of

the application to increase accessibility and usability

in various environments, making it convenient for

on-the-go planning.

7. Collaboration Features: Add features that allow

multiple users to collaborate in real-time, facilitating

team-based planning and decision-making processes.

By implementing these suggestions, the application can

become even more versatile and valuable, catering to a wider

range of use cases and user needs.

ACKNOWLEDGMENT

The first and foremost, I serve my gratitude to the Almighty
god, that through Him I can write this paper and build this
application. Secondly, thanks to my parents that always support
me throughout my life, especially during learning in Institut
Teknologi Bandung. And lastly, to my teacher, Mr. Rinaldi
Munir, thank you for all your teaching and guidance, I
appreciate it a lot.

REFERENCES

[1] Yan, Yumeng, “Research on the A Star Algorithm for Finding Shortest
Path,”. Beijing: Beijing-Dublin International College, 2023, pp. 157.

[2] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-
Planning-Bagian2-2021.pdf. Accessed on 11 May 2024

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Abdullah Mubarak

Abdullah Mubarak

13522101

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf

